Wait a second...
Nepřihlášený uživatel
iduzel: 52781
idvazba: 60824
šablona: api_html
čas: 19.4.2021 04:01:11
verze: 4827
uzivatel:
remoteAPIs: https://cis-web.vscht.cz/zaverecne-prace/program/
branch: trunk
Obnovit | RAW
Chemie a technologie materiálů (double degree)

Chemie a technologie materiálů (double degree)

Doctoral programme, Faculty of Chemical Technology

Programme is leading to two diplomas from both home university as well as partner university.

Cílem předkládaného doktorského studijního programu Chemie a technologie materiálů je ve spolupráci s Ecole Nationale Superieure de Chimie de Lille, Lille, Francie, Normandy University, Caen, Francie a Università Politecnica delle Marche, Ancona, Itálie vychovat vysoce kvalifikované odborníky na nejvyšší úrovni vysokoškolského vzdělávání (doktorské úrovni), a to jak s pokročilými teoretickými poznatky, tak i s praktickými dovednostmi v oblasti kovových, anorganických nekovových a polymerních materiálů, způsobilé jak v pokračování jejich akademické kariéry, tak k přímému vstupu do výzkumně zaměřené praxe ve špičkových veřejných i soukromých institucích, příp. ve státní správě. Studenti díky double-degree formě doktorského studijního programu získají cenné odborné i jazykové zahraniční zkušenosti, stejně jako mezioborové znalosti a přenositelné dovednosti, které zvýší jejich konkurenceschopnost a možnost uplatnění na pracovním trhu. Využity budou jak silné stránky VŠCHT Praha, spočívající v silném odborném zázemí špičkových akademických pracovníků a vybavení moderní přístrojovou technikou, tak i specifické silné stránky zahraničních partnerů s unikátním a komplementárním vzdělávacím a výzkumným profilem.

Careers

Absolventi programu mají znalosti o všech základních typech materiálů (kovových, anorganických nekovových a polymerních). V rámci studia, v závislosti na zaměření disertační práce, si intenzivně prohlubují znalosti o jednotlivých materiálových skupinách. Studijní program obsahuje teoretické předměty zaměřené na fyziku a chemii materiálů, které popisují termodynamiku a kinetiku procesů při přípravě, zpracování a aplikacích materiálů. V dalších předmětech si studenti prohlubují znalosti o tradičních i moderních materiálových technologiích, o korozi a degradaci materiálů a o pokročilých metodách analýzy materiálů. Absolvent double-degree doktorského studijního programu bude i díky intenzivní mezinárodní zkušenosti tvůrčím nositelem nových trendů a moderních kompetencí ve vědě i ve výzkumné praxi, která zahrnuje zejména průmyslový výzkum a vývoj, kontrolní orgány a další instituce v oblasti vědy, výzkumu a inovací. Přispěje tak ke zlepšení konkurenceschopnosti těchto institucí ve světovém srovnání. Pro uplatnění absolventů na trhu práce je velice důležité získat odborné profesní znalosti zasazené do mezinárodního kontextu, což přinese jejich lepší kariérní růst. Významnou výhodu studia představuje absolvování jeho části na renomované zahraniční univerzitě, kde získají posluchači nejen odpovídající komplementární odborné znalosti, ale rovněž mezinárodní zkušenost a jazykovou dovednost.

Programme Details

Language of instruction Czech
Standard length of study 4 years
Form of study Full time
Guarantor of study programme prof. RNDr. Ondrej Gedeon, Ph.D., DSc.
Programme Code DD102
Place of study Praha + partnerská univerzita
Capacity 4 students
Number of available PhD theses 7

List of available PhD theses

Elucidating the origin of magnetoelectric coupling in Fe4M2O9 phases

Department: Department of Inorganic Chemistry, Faculty of Chemical Technology

Annotation

Multiferroic materials exhibiting at least two ferroic orders such as ferroelectricity and ferromagnetism are the focus of researchers attention. The magneto-electric coupling is very appealing for applications in devices, such as memories, where the magnetic information has to be controlled by an electric field. The thesis work will focus on the synthesis and the study of the structural/magnetic/dielectric/ ferroelectric properties of Fe4M2O9 mono- and poly-crystals. As these Fe2+ containing oxides exist only for M = Nb and Ta, the thermodynamic stability of these phases will be calculated in connection with their magneto-elastic coupling.

High-entropy alloys prepared by powder metallurgy techniques

Department: Department of Metals and Corrosion Engineering, Faculty of Chemical Technology
Theses supervisor: Ing. Filip Průša, Ph.D.

Annotation

Since the year 2004, the materials research gained a new way of focusing on special alloys made initially of five elements with equiatomic compositions. The newly discovered group of materials has been since then known as high-entropy alloys (HEA) due to a high entropy of mixing which allows creating predominantly solid solutions instead of intermetallic phases. These materials are known to be exhibiting a variety of excellent properties that often combine high strengths while maintaining good ductility, good corrosion resistance and others.
The work will aim at the description of the microstructure-related properties of high-entropy alloys prepared by powder metallurgy techniques combining mechanical alloying and compaction via spark plasma sintering.

Impact of the magnetism on the thermoelectric properties of oxides and sulfides

Department: Department of Inorganic Chemistry, Faculty of Chemical Technology

Annotation

Thermopower can be very sensitive to spins and magnetism, and its enhancement has already been observed in oxides, as exemplified in NaxCoO2 or in misfit cobaltites. Recently, the impact of magnetism has been evidenced in ferromagnetic and metallic CoS2 with an extra contribution to thermopower measured in the. In the insulating thiospinel CuCrTiS4, the transport properties are actually very similar to magnetoresistant oxides, with variable range hopping transport associated to a large negative magnetoresistance and magnetothermopower. The aim of this project is to investigate the influence of magnetism on the thermoelectric properties of these sulfides presenting different ground states, to tune and optimize this enhancement of thermopower. A detailed investigation of the thermal properties will also be realized.

Mechanism of the formation of intermetallics in mechanical alloying

Department: Department of Metals and Corrosion Engineering, Faculty of Chemical Technology
Theses supervisor: doc. Ing. Pavel Novák, Ph.D.

Annotation

Mechanical alloying is a popular technology for the preparation of powders of alloys or intermediary compounds (e.g. intermetallics, carbides or borides) by high energy mechanical milling. The high popularity of the method is given by the fact that it usually leads to nanostructured materials and that even non-miscible elements can create solid solutions during mechanical alloying. Even though the result is known and there are many descriptions available, the mechanism of the formation of intermetallics in this process is not fully understood yet. The reasons are probably in a large variety of possible process parameters and by impossibility to measure the temperature inside the powder in the milling jar. This work proposes following concept: indirect determination of the dependence of the peak powder temperature on milling conditions (rpm, ball-to-powder ratio, ball size) by the use of thermally decomposing salts, comparison of phase composition of the mechanically alloyed powder with the reference powder mixture exposed in the furnace to the detected peak temperature and observation of the time development of the microstructure and phase composition by XRD and electron microscopy (SEM, TEM). The mechanism will be observed on several different systems containing brittle and ductile powders (e.g. Ti-Al, Ti-Si, Ti-Al-Si) and the general conclusion regarding the mechanical alloying mechanism will be formulated.

Preparation of olefin block copolymers

Department: Department of Polymers, Faculty of Chemical Technology
Theses supervisor: doc. Ing. Jan Merna, Ph.D.

Annotation

The thesis will be focused on the preparation of block copolymers based on olefin and diene monomers by coordination copolymerizations. The focus will be on copolymers with blocks of different properties, e.g. hard and soft blocks. Principles of coordination chain transfer polymerization and chain-shuttling polymerization will be applied. Introduction of polar functional groups will also be of interest. The work will include organometallic synthesis of catalysts, polymerization experiments in presence of various transfer agents and full characterization of obtained polymers.

Příprava slitin na bázi Al se slitinami z hlubokomořských přírodních zdrojů a jejich korozní odolnost

Department: Department of Metals and Corrosion Engineering, Faculty of Chemical Technology

Annotation

Deep sea manganese nodules are formed by Mn and Fe oxide/hydroxides with minor amounts of critical elements like transition metals (TM) and rare earth metals (RE). The traditional way of processing this natural source is to separate the individual metals. This work is focused on innovative strategy of deep sea nodules utilization: a rough metallic alloy will be obtained by their reduction of natural mineral sources and it can be used for production of Al-based alloys. These alloys will be prepared by casting and extrusion with subsequent processing by rapid solidification and mechanical alloying, followed by spark plasma sintering compaction. Their microstructure and chemical-physics properties will be characterized and compared to commercial Al-alloys, which are widely used for different technological and industrial applications, due to their lightness, good mechanical properties and their low cost. Furthermore, considering all these applications, these metallic materials have a great interest in terms of corrosion performances in critical exposure conditions, therefore these studies will be performed as well.

Structural, Magnetic and Thermoelectric Properties of TM in ZnO / ZnS: Effects of Nano-sizing

Department: Department of Inorganic Chemistry, Faculty of Chemical Technology
Theses supervisor: Ing. Ladislav Nádherný, Ph.D.

Annotation

In the past ten years, the interest in zinc oxide research in the field of magnetic semiconductors has significantly increased. According to the Zener model, manganese-doped ZnO is one of the systems in which ferromagnetic behavior could be achieved even at room temperature. Since the solubility of magnetic Mn in bulk ZnO is very limited, new approaches to prepare thin films and nanoparticles with higher dopant concentration are used. The aim of this dissertation thesis is to prepare nanopowders based on ZnO with the highest concentration of Mn as possible. Prepared powders will be characterized by means of XRD, TEM, DSC, DLS, PPMS, and the nanosizing effect on the Mn solubility in ZnO or ZnS will be described.


UCT Prague
5 Technická
166 28 Prague 6 – Dejvice
IČO: 60461337
VAT: CZ60461373

Data mail: sp4j9ch

Copyright UCT Prague 2014
Informations provided by Department of International Relations, Department of R&D, technical service by Computer Centre
switch to desktop version