Wait a second...
Nepřihlášený uživatel
iduzel: 52781
idvazba: 60824
šablona: api_html
čas: 16.10.2021 20:18:47
verze: 4927
uzivatel:
remoteAPIs: https://cis-web.vscht.cz/zaverecne-prace/program/
branch: trunk
Obnovit | RAW
Drugs and Biomaterials

Drugs and Biomaterials

Doctoral programme, Faculty of Chemical Technology
CHYBI CHARAKTERISTIKA PROGRAMU

Studijní program Léčiva a biomateriály směřuje zejména do oblastí medicinální chemie; analýza léčiv a studium struktury pevných farmaceutických substancí; výzkum a studium vlastností anorganických a polymerních materiálů pro biomedicínské aplikace; farmaceutické procesní inženýrství; aplikovaná informatika pro farmaceutický průmysl.

Careers

Absolventi se uplatňují především v základním i aplikovaném výzkumu léčiv a lékových forem, farmaceutických technologií a biomateriálů na univerzitních pracovištích, v ústavech AVČR, ve výzkumných a technologických centrech v České republice i v zahraničí. Dále nacházejí práci i ve výzkumných pracovištích a vývojových, analytických či kontrolních laboratořích příslušných průmyslových podniků či státní správy, případně zastávají vyšší řídící funkce související s výzkumem a vývojem.

Programme Details

Language of instruction Czech
Standard length of study 4 years
Form of study Full time + Combined
Guarantor of study programme prof. Ing. Radek Cibulka, Ph.D.
Programme Code LB
Place of study Praha
Capacity 30 students
Number of available PhD theses 0

List of available PhD theses

Zatím nebyly vypsané disertační práce.

Drugs and Biomaterials

Drugs and Biomaterials

Doctoral programme, Faculty of Chemical Engineering

Studijní program Léčiva a biomateriály směřuje zejména do oblastí medicinální chemie; analýza léčiv a studium struktury pevných farmaceutických substancí; výzkum a studium vlastností anorganických a polymerních materiálů pro biomedicínské aplikace; farmaceutické procesní inženýrství; aplikovaná informatika pro farmaceutický průmysl.

Absolventi se uplatňují především v základním i aplikovaném výzkumu léčiv a lékových forem, farmaceutických technologií a biomateriálů na univerzitních pracovištích, v ústavech AVČR, ve výzkumných a technologických centrech v České republice i v zahraničí. Dále nacházejí práci i ve výzkumných pracovištích a vývojových, analytických či kontrolních laboratořích příslušných průmyslových podniků či státní správy, případně zastávají vyšší řídící funkce související s výzkumem a vývojem.

Careers

Absolventi se uplatňují především v základním i aplikovaném výzkumu léčiv a lékových forem, farmaceutických technologií a biomateriálů na univerzitních pracovištích, v ústavech AVČR, ve výzkumných a technologických centrech v České republice i v zahraničí. Dále nacházejí práci i ve výzkumných pracovištích a vývojových, analytických či kontrolních laboratořích příslušných průmyslových podniků či státní správy, případně zastávají vyšší řídící funkce související s výzkumem a vývojem.

Programme Details

Language of instruction Czech
Standard length of study 4 years
Form of study Full time + Combined
Guarantor of study programme prof. Ing. Radek Cibulka, Ph.D.
Programme Code LB
Place of study Praha
Capacity 20 students
Number of available PhD theses 14

List of available PhD theses

Advanced formulation approaches for topical delivery

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

Although skin appears to be a macroscopically homogeneous and biologically passive structure, it is exactly the opposite: it is incredibly heterogeneous both chemically and structurally, and it is host to a diversity of active cells such as macrophages and bacteria. Traditional approaches to topical delivery have relied on relatively simple systems such as passive diffusion from water- or oil-based solutions or creams/gels. The aim of this project is to investigate bioactive transport as a mechanism for topical delivery and find a solution to such molecules as therapeutic peptides, which are known to be extremely challenging to formulate and delivery to the body. This project will explore the use of drug delivery systems that are actively phagocytised for targeting macrophages residing in the skin. These drug delivery systems will include naturally sourced polysaccharide shells or lipidic vesicles obtained from single-cell organisms. Their mild immunogenicity, biocompatibility and ability to encapsulate a broad range of molecules will be utilized for the formulation of APIs that have proven to be challenging by traditional means.

Design and application of supra-lipidic structures

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

The gastro-intestinal transit, emulsification, digestion and absorption of lipidic components from food is crucial not only from the nutritional point of view but also for the dissolution and absorption of many drugs, and therefore their bioavailability. An increasing number of active pharmaceutical ingredients (APIs) that enter the drug development process are highly lipophilic, which makes their bioavailability susceptible to patient-specific dietary habits and often leads to undesired phenomena such as positive food effect. For some APIs, the bioavailability can be up to five times higher when taken on a full stomach compared to bioavailability in the fasted state. The aim of this project is to develop a formulation platform that would make the dissolution, absorption and pharmacokinetics of lipophilic APIs independent of food intake, while not containing a large amount of lipids in the formulation itself. The idea is to create particles that “look like lipids” on the outside but their volume contains predominantly the API or other excipients. Such structures can include e.g. drug suspensions encapsulated in giant liposomes or their aggregates, drug nanocrystals coated by a phospholipid monolayer, or drug-loaded mesoporous silica particles encapsulated within a lipid bi-layer. These elementary structures can also be combined, carrying e.g. several different APIs, functional excipients for absorption enhancement, or pH modifiers that can further reduce patient-to-patient variability.

Development of 3D cell cultures for the evaluation of drug delivery systems

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Development of nanoparticles for drug delivery in wound healing

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

Main focus of this project is to synthesize multifunctional vesicles loaded with hydrophilic and hydrophobic drugs to be used in wound healing. Since these particles can be used directly or as an intermediate during skin dressing their detailed characterization and colloidal stability will be essential. Student will study the impact of vesicle composition (primary system will be surfactant and cholesterol forming niosomes) and method of preparation on the size and properties of the formed nano carriers as well as drug encapsulation efficiency. Once drug will be loaded into vesicles the release kinetics will be measured as a function of molecular weight of used surfactants and ionic strength. Quality of the prepared samples will be characterized by combination of analytical techniques including 3D modulated DLS, Depolarized DLS, static light scattering, optical video microscopy combined with image analysis and cryo-TEM. While batch production mode is simple to realize, part of the project will be also preparation of multifunctional vesicles in microfluidic systems and compare their properties with batch production method.

Erosion-controlled drug release from super-placebo tablets

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

The rate of drug release from a pharmaceutical tablet is one of its most important quality attributes. As an ever-increasing number of Active Pharmaceutical Ingredients (APIs) are developed in alternative solid-state forms such as metastable polymorphs, co-crystals or amorphs, it is desirable to control the rate of drug release by the properties of the tablet matrix rather than by the properties of the API itself. The aim of this project is to explore the so-called “super-placebo” concept, i.e. tablets that erode in a defined way which is independent of the API they contain. The project will systematically explore the relationship between the rate of tablet erosion, the proportion of soluble and insoluble excipients (e.g. mannitol, microcrystalline cellulose), and the manufacturing process parameters (e.g. compaction pressure). The ability to control drug release rate will be demonstrated using several real-world APIs. Advanced instrumental methods such as Magnetic Resonance Imaging, x-ray micro CT and high-speed video-imaging will be used in order to gain a deep understanding of the underlying tablet erosion mechanisms.

Formulation and bioavailability of natural poly-actives

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

Current paradigm in pharmaceutical drug development and its regulatory environment is based on the concept of Active Pharmaceutical Ingredient (API) as a well-defined single molecular entity that is contained in the dosage form at a precise quantity and chemical purity. Although rational in many ways, this approach is rather different from evolution-proof substances found in Nature. The main drawback is single-API medicines is the development of drug resistance over historically extremely short time periods (only a few decades), which is problematic not only in the area of antibiotics but also in cancer treatment, anti-fungal and various anti-parasitic drugs that gradually lose their effectiveness. In contrast, there are examples of natural systems that maintain their efficacy for many millennia. Perhaps the most prominent example of such material is bee propolis. Chemically, propolis is a mixture of several hundred chemical species with location- and season-dependent composition, which would completely disqualify it as a registered medicinal substance. However, it is exactly this variable multi-component character that makes is so robust and durable, not giving pathogens a chance to develop resistance. Propolis contains both water-soluble and water-insoluble components and is typically applied as ethanol dispersion only for surface treatment. The aim of this project is to explore formulation approaches that could enable oral administration of propolis and ensure its safety and bioavailability. The project is multidisciplinary and will include not only formulation and analytical work, but also in vitro and in vivo testing of biological efficacy.

High-throughput development and continuous manufacturing of SMEDD systems

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

Self micro-emulsifying drug delivery systems (SMEDDS) are formulations that spontaneously form a mini- or micro-emulsion upon contact with water. They typically contain the active pharmaceutical ingredient (API), a mixture of oils or low-melting lipids in which the API is soluble, and one or more surfactants and co-surfactants. SMEDDS are complex ternary or higher-order mixtures whose phase behaviour and properties are notoriously difficult to predict at present. Therefore, the development of SMEDDS is to a large extent an empirical process. Due to a large number of formulation components and their possible ratios, it is rarely possible to completely cover the entire design space, which may lead to sub-optimum formulations or even a false rejection of a particular API as non-formulatable. The aim of this project is to construct a device and develop a methodology for automatic combinatorial screening of SMEDDS formulations and their continuous manufacturing based on the so-called liquid marbles. The project will build on a recently developed patented device called “Marblemat” and extend its capabilities towards combinatorial mixing of formulation components and serial production of liquid marbles with systematically varying composition. Simultaneously, capability for high-throughput testing of the formulation properties such as mechanical strength, temperature stability and dissolution properties will be implemented and demonstrated on several industry-relevant APIs.

Naturally sourced particles for drug encapsulation and delivery

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

Drug encapsulation into a suitable carrier particle is a common method used in situations where it is possible to either modify the surface properties (e.g. powder flowability or dispersibility in water), to protect the encapsulated component from the environment (e.g. enzymatic digestion in the GI tract) or to control the rate of drug release. Several man-made encapsulation processes are known. However, there are also many natural systems that rely on encapsulation – the cell walls of single cell organisms or their spores, natural particles such as pollen, extra-cellular vesicles, or sub-cellular structures such as vacuoles or other organelles. Some of these structures are highly specific in terms of drug diffusion and its selectivity, or in terms of recognition by cells of the immune system e.g. due to specific shape of the presence of immunomodulatory functional groups on the surface. Yeast glucan particles can serve as a prime example. The aim of this inter-disciplinary project is to investigate the potential of several different types of naturally sourced particles in drug formulation and drug delivery. Both cell-wall derived particles and organelle-based particles will be considered. Special attention will be paid to the process of particle extraction and isolation, as well to the drug encapsulation methodology.

Oleogels for drug delivery

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

Oleogels, like hydrogels, are semi-solid materials that can contain up to 99 % of a liquid, which is solidified by a three-dimensional polymer network. While hydrogels contain as the liquid and the polymers are hydrophilic, oleogels contain oil and an oleophilic polymer network. Many APIs that are poorly soluble in water could potentially be formulated using oleogels and be either directly dissolved in the oil phase or form a particle depot that would dissolve in the oil gradually and act as a longer-lasting reservoir. The aim of this project is to evaluate the suitablitity of selected oleogel formulations for drug delivery applications from the point of view of manufacturability, drug release kinetics, drug stability, and biological compatibility. The application of oleogels will be demonstrated using several selected APIs both in vitro and in vivo.

On-line measurement and control of continuous pharmaceutical manufacturing

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

The manufacturing of pharmaceutical products is typically carried out batch-wise. While this makes sense for products that are manufactured only occasionally in small quantities, batch processes also have several drawbacks. These include excessive dead-times, need for cleaning to avoid cross-contamination, and generally poorer control over the product quality. By switching pharmaceutical manufacturing to a continuous mode, equipment utilisation can be increased theoretically to 100 %, the footprint of the facilities can be substantially reduced, and standard feed-back and feed-forward control schemes applied. A crucial component of continuous manufacturing processes is on-line measurement of key quality attributes such as particle size distribution, composition uniformity of granular blends, or moisture content. Advanced analytical instruments such as Near-Infrared probes can be used for this purpose. The aim of this project is to explore the on-line measurement and control methods for continuous pharmaceutical manufacturing in an industrial setting and combine them with computer simulation tools in order to optimize the overall process robustness and operability.

Preparation of drug delivery carriers for treatment of rheumatoid arthritis

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

Rheumatoid arthritis (RA) is a chronic autoimmune disorder, mainly affecting joints that are identified by inflammation and swelling of the synovium of the joint. Today, apart from the conventional synthetic disease-modifying antirheumatic drugs (DMARDs), a number of biological DMARDs have been approved. Recently the first targeted synthetic DMARD has also been approved, while other targeted compounds are in the development phase. Particularly interesting is group of drugs which are based on gold complexes. Despite their promising properties, these drugs has low solubility in water and thus low bioavailability. Therefore, within this project we plan to investigate possibility to prepare more soluble compounds of gold complexes using crystal engineering approach as well as formulate these drugs into various nanocarriers. Combination of various preparation and analytical techniques will be used to investigate stability of gold complexes. In the next step we will investigate the impact of encapsulation matrix or complexation partner on the dissolution characteristics of gold complexes.

Process scale-up of pharmaceutical spray drying

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

Spray drying is versatile method for converting solutions, suspensions or pastes into dry, free-flowing powders in the pharmaceutical, food and nutraceutical industries. During product development, the formulation and process variables are typically optimised using a laboratory-scale spray dryer, and the process is then transferred to a pilot or full manufacturing scale. However, it is notoriously difficult to maintain the same particle properties using spray dryers at different scales, which often necessitated long and expensive trials to be carried out at the large scale. The aim of this project is to develop a robust methodology for spray drying process scale-up in an industrial pharmaceutical setting. The main focus will on the transferability of particle size and particle morphology, as these two parameters are known to be the most sensitive to parameters that vary between the laboratory and the manufacturing scale spray-dryers: the initial droplet size and the drying conditions (temperature, gas flowrate, and residence time in the drying chamber).

Synthesis and characterisation of particles with immuno-adhesive properties

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

The specificity of adhesion to the target cells or tissues in a physiological envirionment is a key requisite for the successful implementation of drug delivery systems (DDS). The aim of this work is to explore DDS based on immunoliposomes and their composites (e.g. with magnetic nanoparticles) using surface modification by antibody fragments and other suitable targeting moieties. The immunoliposomes will be tested both in vitro and in vivo in terms of specificity of adhesion, pharmacokinetics, and ability do encapsulate and delivery drugs or pro-drugs.

Synthesis and characterization of nanoparticle system for transfection of cells

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

Delivery of gene vectors during cell transfection is commonly done by positively charged poly ions. When coupled with DNA, this method is capable to deliver the genetic information into the host cell’s nucleus resulting in the production of the protein of interest. Even though this procedure is commonly used, toxicity of polycations results in low cell viability and loss of the culture. In this project we plan to develop a transfection system based on the biodegradable polymers with low toxicity using recently developed aggregation process. Student will be involved in the selection, synthesis and modification of the biodegradable polymer followed by the preparation of polymeric nanoparticles as a DNA carriers. Properties of the prepared polymer will be characterized via various methods include light scattering or GPC. Formed nanoparticles will be characterized by DLS, SEM/TEM, measurement of zeta potential and their colloidal stability. Consequent complexation of produced NPs with DNA and their size will be tested as well. In the last part of the project, process of complexation will be scaled up to the necessary amount to be tested with living cells.


UCT Prague
5 Technická
166 28 Prague 6 – Dejvice
IČO: 60461337
VAT: CZ60461373

Data mail: sp4j9ch

Copyright UCT Prague 2014
Informations provided by Department of International Relations, Department of R&D, technical service by Computer Centre
switch to desktop version