Wait a second...
Nepřihlášený uživatel
You are here: You are here: UCT PragueFCHI → Study → Degree Programmes → Topics of PhD thesis at FCE → List of all available PhD topics
iduzel: 64006
idvazba: 76350
šablona: stranka
čas: 26.4.2024 19:37:43
verze: 5351
uzivatel:
remoteAPIs: https://studuj-api.cis.vscht.cz/cms/prace?weburl=/studies/degree/phd_theses/
branch: trunk
Server: 147.33.89.153
Obnovit | RAW
iduzel: 64006
idvazba: 76350
---Nová url--- (newurl_...)
domena: 'fchi.vscht.cz'
jazyk: 'en'
url: '/studies/degree/phd_theses/prace/druh/I/jazyk/en/fakulta/22340/locale/en/ustav/I016'
iduzel: 64006
path: 8547/4156/1394/4158/10908/12634/12725/64006
CMS: Odkaz na newurlCMS
branch: trunk
Obnovit | RAW

Department of Chemical Engineering

Polymer-based membranes for highly selective removal of CO2 from biogas

Granting Departments: KU Leuven, Belgium
Department of Chemical Engineering
Study Programme/Specialization: ( in Czech language , Double Degree )
Supervisor: prof. Ing. Petr Kočí, Ph.D.
prof. Ivo Vankelecom

Annotation


Membrane-based gas separation technology has contributed significantly to the development of energy-efficient systems for natural gas purification. Also CO2 removal from biogas, with CO2 contents exceeding 40% has more recently known rapid growth and development. Major challenge of polymer membranes for gas separation is related to their susceptibility to plasticization at high CO2 partial pressures. CO2 excessively swells the polymer and eases the permeation of CH4, thus reducing the selectivity. Membrane crosslinking is one of the best ways to prevent the plasticization. Mixed matrix membranes (MMMs), consisting of fillers homogeneously dispersed in a polymeric matrix aim at combining the processibility of polymers and the superior separation properties of the porous fillers. Metal-organic frameworks (MOFs) are such materials which have attracted considerable attention due to their tailorable functionality, well-defined pore size, pore tunability and breathing effects. MMMs for biogas upgrading will be prepared with increased permeabilities by choosing proper MOF/polymer combinations and modifying the thermal treatment, employing core-shell MOF materials with high bulk porosity and a selective shell layer.
Contact supervisor Study place: Department of Chemical Engineering, FCE, VŠCHT Praha

Solvent and pH stable membranes with ultra-sharp molecular weight cut-off values

Granting Departments: KU Leuven, Belgium
Department of Chemical Engineering
Study Programme/Specialization: ( in Czech language , Double Degree )
Supervisor: prof. Ing. Petr Kočí, Ph.D.
prof. Ivo Vankelecom

Annotation


Membrane-based separations currently offer the best strategy to decrease energy requirements and environmental footprint through newly developed solvent resistant nanofiltration (SRNF) or solvent-tolerant nanofiltration (STNF). So-called solvent activation of polymeric membranes involves treatment of an existing membrane by contacting it with solvents or solvent mixtures, which is hypothesized to restructure the membrane polymer through solvatation, increase polymer chain flexibility and organization into suitable structures. This will be verified by systematically treating membranes with different solvents and testing them for the separation of synthetic liquid streams. A high-throughput set-up will be used. Fundamental physico-chemical characterisations of the membranes before and after the treatments will provide insight in the changes at molecular level. The characterization techniques include gas and liquid uptake experiments (diffusivity), PALS (positron annihilation lifetime spectroscopy, to determine free volume element distributions), ERD (elastic recoil scattering, providing elemental analysis in membrane depth profiles), solid state NMR (nuclear magnetic resonance), TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry).
Contact supervisor Study place: Department of Chemical Engineering, FCE, VŠCHT Praha
Updated: 25.3.2022 18:17, Author: Jan Kříž

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
Identification No.: 60461373
VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague
Information provided by the Faculty of Chemical Engineering. Technical support by the Computing Centre.
switch to desktop version