Počkejte prosím chvíli...
Nepřihlášený uživatel
Nacházíte se: VŠCHT PrahaFCHI  → Věda a výzkum → SVK → SVK 2019
iduzel: 49230
idvazba: 55649
šablona: stranka_galerie
čas: 1.12.2022 05:23:25
verze: 5243
uzivatel:
remoteAPIs: https://cis-prihlasovadlo.vscht.cz/svk/?year=2019&faculty=FCHI
branch: trunk
Server: 147.33.89.153
Obnovit | RAW
iduzel: 49230
idvazba: 55649
---Nová url--- (newurl_...)
domena: 'fchi.vscht.cz'
jazyk: 'cs'
url: '/veda-a-vyzkum/svk/2019'
iduzel: 49230
path: 8547/4156/1393/1886/8576/8614/49230
CMS: Odkaz na newurlCMS
branch: trunk
Obnovit | RAW

Studentská vědecká konference 2019

Harmonogram SVK 2019

  • Vyhlášení SVK 2019
  • Uzávěrka podávání přihlášek: 21. 10. 2019
  • Uzávěrka nahrávání anotací: 8. 11. 2019
  • Datum konání SVK: 21. 11. 2019 - VÝSLEDKY

Sborníky

Děkujeme všem sponzorům SVK 2019 na FCHI!

Hlavní sponzoři


Zentiva_Logo.svg (šířka 450px)
šířka 215px

šířka 215px

šířka 215px

Sponzoři

šířka 215px šířka 215px
Optik (šířka 215px) šířka 215px
bighub logo (šířka 215px) eaton_logo_claim_rgb (šířka 215px)
šířka 215px šířka 215px
pinflow_logo (šířka 215px) šířka 215px
šířka 215px šířka 215px
šířka 215px šířka 215px
šířka 215px Logo_White_Anton_Paar_RGB (šířka 215px)
bre (šířka 215px) chemoprojekt (šířka 215px)
šířka 215px  
šířka 215px logo shimadzu (šířka 215px)
spolchemie (šířka 215px) šířka 215px
kapaji_logo_sub (šířka 215px) šířka 215px
šířka 215px vwr_logo_rgb (šířka 215px)
LIM-logo_RGBOPTO (šířka 215px) logo_MERCI_CJ (šířka 215px)
pragolab logo (šířka 215px) rossum (šířka 215px)

Věcné dary

šířka 215px logo ntm (šířka 215px)
šířka 215px šířka 215px
logo_humusoft-1 (šířka 215px) šířka 215px
prof. RNDr. Petr Slavíček, Ph.D.

.

Nejste zalogován/a (anonym)

Chemical Engineering I (B139 - 8:30)

  • Předseda: prof. Ing. Igor Schreiber, CSc.
  • Komise: doc. Mgr. Fatima Hassouna, Ph.D., Ing. Jakub Mužík, Ing. Vít Zvoníček (Zentiva, k.s.), Ing. Suada Dukaj
Čas Jméno Ročník Školitel Název příspěvku Anotace
8:40 Bc. Ashley Hannah George M1 doc. Ing. Miroslav Šoóš, Ph.D. Preparation of niosomes and their characterization detail

Preparation of niosomes and their characterization

The recent advancements in drug delivery systems have provided promising alternatives in administering pharmaceutical compounds. Specifically, niosomes have the capability of improving bioavailability, stability and controlled delivery of the drug. These self-assembled structures consist of hydrophilic and lipophilic regions in which the active pharmaceutical ingredient (API) can be entrapped. The preparation of niosomes was extensively studied and tested by various methods and conditions. Based on their characterization, which was done by microscopic analysis (SEM, TEM, and cryo-TEM) and light scattering techniques (DLS, DDLS, and SLS), we were able to select optimal formulations required for the encapsulation of an API and metallic nanoparticles. Drug-based niosomes were prepared and analyzed by UV-Visible spectrophotometric method to understand the incorporation and encapsulation efficiency of the drug. Gold and iron oxide nanoparticles have proven to be effective in cancer therapy and diagnostic tools due to their unique properties. Their encapsulation in niosomes produces a hybrid nanocarrier system, combining the benefits of both nanoparticles. This work discusses the preparations of such niosomal systems and their applications in drug delivery technology.
9:00 Bc. Kristýna Idžakovičová M1 doc. Ing. Petr Kočí, Ph.D. Modelling of transport and reaction in porous catalytic filters   detail

Modelling of transport and reaction in porous catalytic filters  

Catalytic monolith converters and particulate filter are devices used in automotive exhaust gas aftertreatment. Purpose of catalytic converters is to abate gaseous pollutants such as CO, nitrogen oxides (NOx) and hydrocarbons. Particulate filter traps soot and ash particles present in the exhaust gas. Recent efforts aim on making the whole system more compact. One way to accomplish this is to coat catalytic material directly into the filter as on-wall layer or inside the porous wall. This arrangement saves space, weight and cost of the device, reduces overall heat losses and simplifies soot combustion in contact with the catalyst. On the other hand, distribution of the catalytic material must be optimized to meet the antagonistic requirements – low pressure drop and at the same time high filtration efficiency and conversion of gas pollutants. In this work, I study the influence of inlet concentration of reactants and distribution of catalytic material on the overall CO conversion. For the purpose of this work, I use micro-scale 3D-CFD model of porous catalytic filter with nonlinear Langmuir-Hinshelwood kinetics developed in OpenFOAM. The results show sensitivity of the light-off temperature to both gas composition and catalyst distribution in the filter.  
9:20 Beatriz Peixe M1 doc. Ing. Petr Kočí, Ph.D. Influence of flow distribution on CO oxidation in three-way catalyst detail

Influence of flow distribution on CO oxidation in three-way catalyst

Automotive catalyst is nowadays an inherent part of the exhaust gas after-treatment systems for combustion engines. During the internal combustion, there is not only the formation of non-toxic gases, but also traces of toxic and polluting substances like carbon monoxide (CO), unburned hydrocarbons, nitrogen oxides (NOx) and particulate matter (PM). Aiming on decrease the emissions of these harmful gases, sophisticated devices as the three-way catalyst have been created. One of the most important reactions is the oxidation of carbon monoxide into carbon dioxide (CO2). The purpose of this work is to understand how the flow distribution of the inlet mixture can affect CO oxidation in catalytic monolith. The experiments were performed using a special computer-controlled apparatus constituted by a reactor containing a flow distributor and samples of the catalytic monolith, accompanied by analysers, mass-flow controllers and multi-way valve for rapid switching of lean and rich reaction mixtures. CO light-off curves measured with and without several different flow distributors are compared and effects of non-uniform flow distribution on CO conversion are discussed.
9:40 Bc. Erik Sonntag M2 prof. Ing. František Štěpánek, Ph.D. Reactive Dissolution of Poorly Soluble Prodrug Suspension  detail

Reactive Dissolution of Poorly Soluble Prodrug Suspension 

This work deals with development and validation of in vitro dissolution method for an intramuscular depot suspension. Such pharmaceutical formulation is injected into a muscle in a form of a prodrug, which is a substance similar to an API (active pharmaceutical ingredient) with no pharmacological effect on a human body. A depot of solid prodrug particles is formed at the site of administration, which gradually dissolves into the tissue fluid. In a liquid phase, the prodrug is converted to the API by enzymes, which are naturally present in a human body. The API is subsequently transported via blood circulation to the site of action. This research deals with design of the dissolution method, which is an experimental setup that mimics the described process under in vitro conditions and allows us to measure the API release kinetics. This dissolution method is part of generic drug development and can also be used for the drug quality control. Various types of dissolution methods were developed for particular depot suspension along with an analytical method to determine the concentration of the API and prodrug. Furthermore, computer simulation was created, which describes the dissolution kinetics of the suspension based on particle size distribution and their specific surface area.  
10:20 Bc. David Zůza M2 Ing. Ondřej Kašpar, Ph.D. Amorphization of drugs in mesoporous silica using solvent evaporation detail

Amorphization of drugs in mesoporous silica using solvent evaporation

The amorphization of APIs (Active pharmaceutic ingredients) keeps being an important topic for pharmaceutic companies.  The main reason is that the majority of newly discovered APIs are poorly soluble. Preparing them in an amorphous state is a way how to make them dissolve faster. Another reason is that the amorphous form cannot be patented and thus provides a possibility for generic companies to avoid patent collisions. Amorphization in the mesopores of silica particles can be an efficient approach to future drug formulations. The small pores prevent loaded drug from crystallizing, the high specific surface (>1000 m2/g) further promotes dissolution, and the thermal and mechanical stability and biocompatibility make the utilization for oral dosage forms highly desirable. Loading of API into the silica particles can be done by a variety of methods, for example by melt loading, equilibria loading from a solution or by solvent evaporation loading. In this work, the solvent evaporation method is explored in detail in order to obtain general guidelines for the preparation of silica drug formulations in the future. The prepared samples were evaluated by a variety of analytical methods and their dissolution rate was measured and compared with crude API.  
10:40 Bc. Filip Zavřel M2 Gabriela Ruphuy Chan, M.Sc.Ph.D. 3D printing of PCL/HA scaffolds for bone tissue engineering detail

3D printing of PCL/HA scaffolds for bone tissue engineering

Bone grafting is a widely adopted clinical technique with over 2 million cases every year. It is used for the treatment of wounds that require structural support for the injury to heal properly, followed by a subsequent resorption or a permanent placement of the graft.  However, the clinical limitations have been reached with regards to large defects. The incorporated graft, which acts as a cellular scaffold, has to provide a sufficient means for vascularisation and transport of substances both in and out of the structure to prevent necrosis. This places certain requirements on the scaffold surface and porosity as well as the material rate of resorption.  The utilisation of 3D printing presents a possible solution to this problem. Using bioresorbable poly(ε-caprolactone) (PCL) polymer, patient-specific structures can be created and enhanced by the addition of hydroxyapatite (HA) particles. This study is aimed to describe the properties and processing parameters of PCL/HA scaffolds created using the 3D printing technique and evaluate their dependency on the hydroxyapatite content.  
11:00 Bc. Martin Krov M1 Ing. Aleš Zadražil, Ph.D. Optimization of liquid dosing for the production of liquid marbles detail

Optimization of liquid dosing for the production of liquid marbles

In recent years, significant progress has been made in the research of liquid marbles. However, currently, liquid marbles are prepared by manually dripping the liquid onto a layer of powder particles. The aim of this work is to make the fabrication of liquid marbles automated in order to allow larger-scale applications. For the production of liquid marbles and especially for pharmaceutical applications, monodisperse droplets of liquid are required in order to ensure that the content of active pharmaceutical ingredient and the dissolution rate are consistent. In this study, the options of dividing flow and thus using a single pump to drive multiple nozzles are investigated. Furthermore, comparison of different pumping principles was made for dripping and jetting. Moreover, a drop-on-demand system was tested. The effects of a thin wire connected to the nozzle was examined as a potential way to decrease droplet size in the dripping regime. The experiments were carried out using viscous glycerol-water mixtures and a polymer melt. The droplet diameter was measured with a high-speed camera and subsequent image analysis.

DSC_9260
DSC_9264
DSC_9262
DSC_9266
DSC_9265
DSC_9270
DSC_9276
DSC_9275
DSC_9268
DSC_9259
DSC_9278
DSC_9304
DSC_9301
DSC_9305
DSC_9303
DSC_9340
DSC_9342
DSC_9346
DSC_9347
DSC_9320
DSC_9326
DSC_9325
DSC_9323
DSC_9364
DSC_9366
DSC_9363
DSC_9313
DSC_9317
DSC_9352
DSC_9356
DSC_9351
DSC_9355
DSC_9353
DSC_9330
DSC_9334
DSC_9332
DSC_9336
DSC_9370
DSC_9372
DSC_9375
DSC_9377
DSC_9308
DSC_9309
DSC_9329
DSC_9319
DSC_9358
DSC_9378
DSC_9379
DSC_9280
DSC_9285
DSC_9283
DSC_9287
DSC_9290
DSC_9291
DSC_9295
DSC_9293
DSC_9297
DSC_9298

Aktualizováno: 28.11.2019 18:49, Autor: Jitka Čejková

VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČ: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Za informace odpovídá: Fakulta chemicko-inženýrská
Technický správce: Výpočetní centrum

Copyright VŠCHT Praha
zobrazit plnou verzi